ErbB2 and ErbB3 regulate amputation-induced proliferation and migration during vertebrate regeneration.

نویسندگان

  • Agustin Rojas-Muñoz
  • Shibani Rajadhyksha
  • Darren Gilmour
  • Frauke van Bebber
  • Christopher Antos
  • Concepción Rodríguez Esteban
  • Christiane Nüsslein-Volhard
  • Juan Carlos Izpisúa Belmonte
چکیده

Epimorphic regeneration is a unique and complex instance of postembryonic growth observed in certain metazoans that is usually triggered by severe injury [Akimenko et al., 2003; Alvarado and Tsonis, 2006; Brockes, 1997; Endo et al., 2004]. Cell division and migration are two fundamental biological processes required for supplying replacement cells during regeneration [Endo et al., 2004; Slack, 2007]. However, the connection between the early stimuli generated after injury and the signals regulating proliferation and migration during regeneration remain largely unknown. Here we show that the oncogenes ErbB2 and ErbB3, two members of the EGFR family, are essential for mounting a successful regeneration response in vertebrates. Importantly, amputation-induced progenitor proliferation and migration are significantly reduced upon genetic and/or chemical modulation of ErbB function. Moreover, we also found that NRG1 and PI3K functionally interact with ErbB2 and ErbB3 during regeneration and interfering with their function also abrogates the capacity of progenitor cells to regenerate lost structures upon amputation. Our findings suggest that ErbB, PI3K and NRG1 are components of a permissive switch for migration and proliferation continuously acting across the amputated fin from early stages of vertebrate regeneration onwards that regulate the expression of the transcription factors lef1 and msxB.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

erbb3 and erbb2 Are Essential for Schwann Cell Migration and Myelination in Zebrafish

BACKGROUND Myelin is critical for efficient axonal conduction in the vertebrate nervous system. Neuregulin (Nrg) ligands and their ErbB receptors are required for the development of Schwann cells, the glial cells that form myelin in the peripheral nervous system. Previous studies have not determined whether Nrg-ErbB signaling is essential in vivo for Schwann cell fate specification, proliferati...

متن کامل

Zinc finger transcription factors designed for bispecific coregulation of ErbB2 and ErbB3 receptors: insights into ErbB receptor biology.

Signaling through the ErbB family of tyrosine kinase receptors in normal and cancer-derived cell lines contributes to cell growth and differentiation. In this work, we altered the levels of ErbB2 and ErbB3 receptors, individually and in combination, by using 6-finger and 12-finger synthetic zinc finger protein artificial transcription factors (ATFs) in an epidermoid squamous cell carcinoma line...

متن کامل

Activin-betaA signaling is required for zebrafish fin regeneration.

Vertebrate limb regeneration occurs in anamniotes such as newts, salamanders, and zebrafish. After appendage amputation, the resection site is covered by a wound epidermis capping the underlying mature tissues of the stump from which the blastema emerges. The blastema is a mass of progenitor cells that constitute an apical growth zone. During outgrowth formation, the proximal blastemal cells pr...

متن کامل

Neuregulin Facilitates Nerve Regeneration by Speeding Schwann Cell Migration via ErbB2/3-Dependent FAK Pathway

BACKGROUND Adequate migration of Schwann cells (Sc) is crucial for axon-guidance in the regenerative process after peripheral nerve injury (PNI). Considering neuregulin-erbB-FAK signaling is an essential pathway participating in the regulation of Sc migration during development, the present study is aimed to examine whether neuregulin would exert its beneficial effects on adult following PNI an...

متن کامل

The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation.

ErbB2 is a receptor tyrosine kinase whose activity in normal cells depends on dimerization with another ligand-binding ErbB receptor. In contrast, amplification of c-erbB2 in tumors results in dramatic overexpression and constitutive activation of the receptor. Breast cancer cells overexpressing ErbB2 depend on its activity for proliferation, because treatment of these cells with ErbB2-specific...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Developmental biology

دوره 327 1  شماره 

صفحات  -

تاریخ انتشار 2009